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Motivation
In 1954 Marstrand proved that the Hausdorff dimension of projections of Borel
E ⊆ R2 satisfy

dimH projV E = min{dimH E, 1},

for almost all one-dimensional subspaces V ⊆ R2, where projV denotes orthog-
onal projection onto V . Later on, this was extended to higher dimensions by
Matilla. This motivated us to ask whether an analogous theorem were true for
the intermediate dimensions introduced by Falconer, Fraser and Kempton in
2018.

Figure 1: An example projection of a set in R2 onto a linear subspace.

Intermediate Dimensions
Intermediate dimensions refer to a spectrum of dimensions that interpolate be-
tween the Hausdorff and box-counting dimensions of a set E. To gain an intuitive
appreciation for their definition, first recall that:
• Box dimension is derived from the growth rate of the cardinality of covers of

sets of equal diameter as this diameter shrinks to zero.
• Hausdorff dimension is defined by

dimH E = inf
{
s ≥ 0 : ∀ε > 0: ∃ a cover {Ui}i of F such that ∑ |Ui|s ≤ ε

}
,

where no restriction on the relationships of diameters within a cover is given.

Figure 2: The types of covers considered by Box and Hausdorff dimensions.

This motivates the intermediate dimensions: for θ ∈ [0, 1], the θ-intermediate
dimension dimθ F is defined in essentially the same way as dimH E, except each
pair of sets U, V within the covers must satisfy |U | ≤ |V |θ. Notice how this
recovers the box-counting and Hausdorff covering schemes when θ = 1 and
θ = 0, respectively.

Capacities and Kernels
Let E ⊂ Rn be Borel, θ ∈ (0, 1], m ∈ {1, . . . , n}, 0 ≤ s ≤ m and 0 < r < 1.
For a potential kernel φs,m

r,θ : Rn → R+, the capacity Cs,m
r,θ (E) of E is

Cs,m
r,θ (E) =

(
inf

µ∈M(E)

∫ ∫
φs,m

r,θ (x − y) dµ(x)dµ(y)
)−1

,

i.e. the reciprocal of the minimum energy achieved by Borel measures supported
on E.
The choice of kernel is crucial. For intermediate dimensions, we discovered

φs,m
r,θ (x) =


1 0 ≤ |x| < r(
r/|x|

)s
r ≤ |x| < rθ

rθ(m−s)+s/|x|m rθ ≤ |x|
(x ∈ Rn)

was effective.

Dimension Profiles
For a general notion of dimension and m ∈ {1, . . . , n}, an m-dimension profile
aims to provide a set function whose image of a set E is the almost-sure value
of the dimension of orthogonal projections of E onto m-dimensional subspaces.
For example, box dimension profiles were introduced by Falconer and Howroyd
in 1996.
In our setting, we define the m-intermediate dimension profile of E ⊂ Rn, in
terms of capacities, as

dimm
θ E = the unique s ∈ [0, m] such that lim

r→0

log Cs,m
r,θ (E)

− log r
= s.

Results
Our first main result shows that the dimension profiles recover the intermediate
dimensions when m = n.
Theorem 1 If E ⊂ Rn is compact and θ ∈ (0, 1], then

dim θE = dimn
θE.

Our second result is a Marstrand-type theorem for the intermediate dimensions.
In the following, G(n, m) denotes the Grassmanian of m-dimensional linear
subspaces of Rn and γn,m the natural invariant probability measure on G(n, m).
Theorem 2 If E ⊂ Rn is bounded, then

dim θprojV E ≤ dimm
θ E

for all θ ∈ (0, 1] and all V ∈ G(n, m). Moreover, for γn,m-almost all V ∈
G(n, m),

dim θprojV E = dimm
θ E

for all θ ∈ (0, 1].
An intuitive way of understanding Theorem 2 is that our dimension pro-
files provide the almost-sure intermediate dimension of E when seen from an
m-dimensional viewpoint.


